En cumplimiento de la primera Ley de la robótica: Análisis de los riesgos laborales asociados a un algoritmo/inteligencia artificial dirigiendo el trabajo

Autores/as

  • Adrìan Todolì Signes Universidad de Vlència

DOI:

https://doi.org/10.6092/issn.2421-2695/10237

Palabras clave:

Occupational risk prevention, Artificial Intelligence to manage workers, automated decision making, people analytics, Big Data, algorithms to manage the work

Resumen

Cada vez es más frecuente la utilización por parte de la empresa de mecanismos de inteligencia artificial, más o menos avanzados, para gestionar el trabajo: establecer turnos de trabajo, tiempos en la producción, designar y diseñar tareas para los trabajadores, contratar, evaluar el desempeño y despedir. Las empresas confían en que la tecnología recoja toda la información disponible, la procese y tome las mejores decisiones de gestión –optimización productiva- en beneficio de la misma. Con ello, se sustituye a los supervisores y mandos intermedios humanos, así como a los expertos de recursos humanos dejando la dirección de los trabajadores en manos de procesos automatizados manejados por algoritmos –o en su estado más avanzado, en la inteligencia artificial-.

En este trabajo, se exponen los peligros para la salud que nueva forma de gestión tecnológica puede provocar. En efecto, la monitorización constante a través de sensores, la intensificación del trabajo derivada de las decisiones tomadas por una máquina sin empatía ni conocimiento sobre los límites humanos, la reducción de autonomía del trabajador sometido a las decisiones tomadas por la inteligencia artificial, las discriminaciones bajo un manto de neutralidad algorítmica de esas decisiones, así como los posibles errores de funcionamiento, pueden acabar provocando serios problemas de salud física y psicológica para los trabajadores.

Estos riesgos pueden reducirse si se tienen en cuenta en la programación. En este trabajo, se defiende la necesidad de una correcta programación del algoritmo para que valore los riesgos laborales expuestos. Es decir, de la misma forma que un supervisor debe tener formación en prevención de riesgos para poder realizar su trabajo, el algoritmo deberá ser programado para que sopese los riesgos laborales en el trabajo –y en caso de no contar con esta programación deberá impedirse su utilización para dirigir trabajadores. Concretamente, el algoritmo deberá ser trasparente, adaptado a las capacidades reales del trabajador, deberá dejar algún margen de autonomía al trabajador y respetar su privacidad. En definitiva, el algoritmo deberá valorar cualquier elemento que suponga un riesgo para la seguridad y salud de los trabajadores. Para ello, se defiende que la preceptiva evaluación de riesgos, realizada por los técnicos, sea volcada en la programación del algoritmo para que este la respete en la toma de decisiones en la dirección del trabajo.

Citas

Ajunwa I. et al., Limitless worker surveillance, California Law Review, 2017, 105, 3.

Akhtar y Moore, The Psycho-Social Impactos of Technological change in contemporary workplaces and trade union responses, en IJLR, 2016, 8, 1-2, 102-131.

Ajunwa, Limitless Worker Surveillance, 105 Calif. L. Rev. 735, 2017, 105 y ss.

Blanc, Inspection reforms: why, how, and with what results, 2013, OECD, Paris.

Bernstein, E., The transparency paradox: A role for privacy in Organizational Learning and operational Control, en Administrative Science Quarterly, 2012, 57, 2, 181-216.

Bodie M., et al., The Law and policy of People Analytics, Sant Louis U. Legal studies Research Paper, 2016, 6.

Calvard, Big data: Lessons for employers and employees', Employee Relations, 2019.

CBS, Hackers Could Remotely Gain Control of Cars in Mass Cyberattack, Researchers Find, CBS, 2019, disponible en losangeles.cbslocal.com/2019/07/31/hackers-could-remotelygain-

control-of-cars-in-mass-cyberattack-researchers-find/.

Crawford k y Schultz J., Big data and due process: Towards a framework to redress predictive privacy harms, en Boston College Law Review, 2014, 55, 1.

Dahl, Risikobasert tilsyn I de nordiske arbeidstilsynene, 2018, Nordic Council of Ministers, Copenhagen.

Dembe A.E. et al., The impact of overtime and long work hours on occupational injuries and illnesses: new evidence from the United States, en Occupational and Environmental Medicine, 2005, 62, 9,

-597.

Derks and Bakker, Smartphone use, work-home interference and burnout: a diary study on the role of recovery, en Applied Psychology, 2014, 63, 3.

Domeinski et al., Human redundancy in automation monitoring: Effects of social loafing and social compensation, en Proceeding of human factors and ergonomics Society 51st Annual meeting, 2007, 587-591.

Dzindolet et al., The perceived utility of human and automated aids in visual detection task, en Human Factors, 2002, 44, 79-94.

El periódico, España, país de consejeros (hombres), 2016, disponible en

www.elperiodico.com/es/economia/20170204/espana-mujeres-consejosadministracion-ibex-35-2016-5784962.

EU-OSHA, Second European Survey of Enterprises on New and Emerging Risks (ESENER-2). Overview Report: Managing Safety and Health at Work, 2013, en https://osha.europa.eu/en/tools-and-publications/publications/second-europeansurvey-enterprises-new-and-emerging-risks-esener.

EU-OSHA, Monitoring technology: the 21st century's pursuit of well-being?, enhttps://osha.europa.eu/en/tools-and-publications/publications/monitoringtechnology-workplace/view, 2017.

EU-OSHA, Foresight on new and emerging occupational safety and health risks associated with digitalisation by 2025, 2018, en osha.europa.eu/en/tools-andpublications/publications/foresight-new-and-emerging-occupational-safety-andhealth-risks/view.

European Commission, Guide for assessing the quality of risk assessments and risk management measures with regard to prevention of psychosocial risks, European Commission, 2018, en www.ispettorato.gov.it/it-it/Attivita/Documents/Attivitainternazionale/

Guide-psychosocial-risks-EN-Final-Version.pdf.

Felstead & Green, Working longer and harder? A critical assessment of work effort in Britain in comparison to Europe, Making work more equal: a new labour market segmentation approach, 2017, 188-207.

Fernández Avilés J.A., NTIC y riesgos psicosociales en el trabajo: estado de situación y propuestas de mejora, en DSL, 2017, 2.

Fernández Domínguez, J.J., La incidencia de los factores “extralaborales” en la salud mental de los trabajadores, en Fernández Domínguez, J.J. y Rodríguez Escanciano S., (Dir.), Tiempos de cambio y salud mental de los trabajadores, 2017, Bomarzo.

Financial Times, Wearable devices aim to reduce workplace accidents, Financial Times, 2016, en https://www.ft.com/content/d0bfea5c-f820-11e5-96db-fc683b5e52db.

Financial Times, IoT-linked wearables will help workers stay safe, Financial Times, 2017, en https://www.ft.com/content/944e6efe-96cb-11e7-8c5c-c8d8fa6961bb.

Flaig, Predictive tools and big data “to help tackle 2.3m yearly worker deaths”, Institute of mechanical engineers, 2017.

Garriga Domínguez A., La elaboración de perfiles y su impacto en los DDFF. Una primera aproximación a su regulación en el RGUE, Derechos y Libertades, 2018, 38.

Hamlyn-Harris, J. H., Three reasons why pacemakers are vulnerable to hacking, The Conversation, 2017, en http://theconversation.com/three-reasons-why-pacemakers-arevulnerableto-hacking-83362.

Hardt M., How big data is unfair, Medium, 2014, https://medium.com/@mrtz/how-big-datais-unfair-9aa544d739de.

Himma, The concept of information overload: a preliminary step in understanding the nature of harmful information-related conditions, Ethics and information Technology, 2007, 9 (4), 259-272.

Horton J., et al., Workplace Safety Futures: The impact of emerging technologies and platforms on work health and safety and workers´ compensation over the next 20 years, 2018, CSIRO, Canberra.

HSE, Tackling work-related stress using the Management, Health and Safety Executive, 2017.

Hung W.S., et al., Managing the risk of overusing mobile phones in the working environment: a study of ubiquitous techno-stress, PACIS 2011 Preceedings Paper 81, 2011.

Jacobusse, G., Veenman, C., On selection bias with imbalanced classes. International Conference on Discovery Science, 2016, Bari, 325-340.

Karasek y Theorell, Healthy work, Basic Books New York, 1990.

Karau y Williams, Social-loafing: A meta-analytic review and theoretical integration, Journal of personality and social psychology, 1993, 65, 681-706.

Lee J., y See J., Trust in automation and technology: Designing for appropriate reliance, Human Factor, 2004, 46, 50-80.

Lindsay, G., We spent two weeks wearing employee Trackers: Here´s what we learned, Fact Coexist, 2015, www.fastcompany.com/3051324/we-spent-two-weeks-wearing-employeetrackers-heres-what-we-learned.

López Rodríguez, La prevención de riesgos laborales en el trabajo a demanda vía aplicaciones digitales, Lan Harremanak, 2019, 41.

Michael, Researching bodies: Embodied fieldwork for knowledge work, which turnos out to be embodied, The SAGE Handbook of qualitative business and Management Research Methods: History and Traditions, 2017.

Miguel Jorge, Los empleados de almacén en Amazon Reino Unido tienen tanto miedo de ir al baño que orinan en botellas, 2018, Gizmodo, Disponible en https://es.gizmodo.com/losempleados-de-almacen-en-amazon-reino-unido-tienen-t-1825291024 , Consultado el 29/08/2019.

Mittelstandt et al., The Ethics of Algorithms: Mapping the Debate”, Big data & Society, 2017, 3 (2), section 7.

Moore, The quantified self in precarity. Work, technology and what counts, New York, Routledge 2018.

Moore, Humans and machines at work: monitoring, surveillance and automation in contemporary capitalism, London, Palgrave Macmillan, 2018.

Muller, European Economic and Social Committee’s Opinion on Artificial Intelligence, 2017, INT/806.

Noah Harari, Homo Deus: Breve historia del mañana, Debate, Barcelona, 2016.

OECD, Best practices principles for regulatory policy: Regulatory enforcement and inspections. The organization for economic Cooperation and development, 2014, Paris.

OIT, Seguridad y salud en el centro del futuro del trabajo, Ginebra, 2019 en www.ilo.org/wcmsp5/groups/public/---dgreports/---

dcomm/documents/publication/ wcms 686762.pdf.

OIT, Trabajar para un futuro más prometedor. comisión mundial sobre el futuro del trabajo, Ginebra, 2019.

Pega and Marketforce, The Future of Work: A Report from Marketforce and Pegasystems, 2017, en www.pega.com/system/files/resources/2018-12/Future-of-Work-

Report.pdf.

Perez Luño, La tercera generación de derechos humanos, 2006, Thomson Aranzadi, Navarra.

Pérez Zapata O. et al, Digitalización, intensificación del trabajo y salud de los trabajadores españoles, 2019 (versión electrónica en

www.ccoo.es/24c0e370fa4b4d1f3682b1780854af9c000001.pdf

Pérez-Zapata, O., Trabajo sin límites, salud insostenible: La intensificación del trabajo del conocimiento, e-prints, Universidad Complutense de Madrid, 2015.

Pinilla-García y López Peláez, La intensificación del trabajo en España (2007-2011): Trabajo en equipo y flexibilidad, Reis: Revista Española De investigaciones Sociológicas 2017, 160, 79-94.

Popma, J., The janus face of the “New ways of work, Rise, risks and regulation of nomadic work, Working paper ETUI, 2013, Brusels.

Ridemar, A., Decision support for SWEA inspection. KTH Royal Institute of Technology, 2018, Stockholm.

Rodríguez-Rico Roldan, Los retos para la prevención de riesgos laborales ante la tecnoficación del trabajo, en Cerejeria Namora et al, Health at work, ageing and enviromental effects on future social

security and labour law Systems, 2018, Cambridege Scholars Publishing.

Rodríguez Escanciano S., Los riesgos psicosociales ante una vigilancia empresarial tecnológicamente avanzada: garantías preventivas y posibilidades de resarcimiento, en Fernández Domínguez, J.J y Rodríguez Escanciano S., (Dir.), Tiempos de cambio y salud mental de los trabajadores, 2017, Bomarzo.

Rosemblat, Uberland, How Algorithms Are Rewriting the Rules of Work, 2019, University of California Press.

Salanova et al., Tecnostres: concepto, medida e intervención psicosocial, Instituto Nacional de Seguridad e Higiene en el trabajo, Nota técnica, 2007, 730.

Spicer A., et al., What Companies Should Ask Before Embracing Wearables, Harvard Business Review, 2015, en https://hbr.org/2015/05/what-companies-should-ask-before-embracingwearables.

Schumacher, S., What employees should know about electronic performance monitoring, ESSAI, 2011, 8, 28, 138-144.

Steijn, W., et al., Emergent risk to workplace safety as a result of the use of robots in the work place, TNO Report R11488, TNO (Netherlands Organisation for Applied Scientific Research), 2016, Disponible en repository.tudelft.nl/view/tno/uuid:94d6e198-4249-40b8-80c0-2d73f7b2e92a/

Todolí Signes, A., La gobernanza colectiva de la protección de datos en las relaciones laborales: big data, creación de perfiles, decisiones empresariales automatizadas y los derechos colectivos, RDS, 2018,

UTS, Heat Stress and On-Demand work: The experience of food delivery and courier cyclists. Climate Justice Centre, 2019, en

opus.lib.uts.edu.au/bitstream/10453/134736/1/On%20Demand%20cyclists%20UTS%20final.pdf.

Van Jaarsveld y Poster, Emotional Labour over the pone en Grandey et al (eds) Emotional Labour in the 21st Century: Diverse Perspectives on Emotion regulation at work. 2013, NY, Routledge, 153-174.

Wacher, B., Mittelstadt Y Floridi, Why a Right to Explanation of Automated Decision-Making Does Not Exist in the General Data Proteccion Regulation, International Data Privacy Law, 2017, 7, 79–90.

Whittaker, X., There is only one thing in life worse than being watched, and that is not being watched: Digital data analytics and the reorganization of newspaper production, in Moore et al (coord),

Humans and Machines at work, Palgrave Macmillan.

Wicken C., y Hollands, K., Engineering psychology and human performance, 2000, NY, Prentice Hall.

Young, S., Braddy, p.w., Y Fleenor, J.w., The impact of New technology on the Leadership Development Industry, Training Industry Magazine, 2017, en https://trainingindustry.com/magazine/nov-dec-2016/the-impact-of-newtechnology-on-the-leadership-development-industry/.

Descargas

Publicado

2019-12-20

Cómo citar

Todolì Signes, A. (2019). En cumplimiento de la primera Ley de la robótica: Análisis de los riesgos laborales asociados a un algoritmo/inteligencia artificial dirigiendo el trabajo. Labour & Law Issues, 5(2), C. 1–38. https://doi.org/10.6092/issn.2421-2695/10237

Número

Sección

Comparative & International Overview